A hybrid multilayer filtering approach for thyroid nodule segmentation on ultrasound images‏

Determining an effective filter can reduce speckle noise and improve segmentation performances. The aim of this study was to define a useful filter to improve the segmentation outcome...

Abstract

Objectives

Speckle noise is the main factor that degrades ultrasound image contrast and segmentation failure. Determining an effective filter can reduce speckle noise and improve segmentation performances. The aim of this study was to define a useful filter to improve the segmentation outcome.

Methods

Twelve filters, including median, hybrid median (Hmed), Fourier Butterworth, Fourier ideal, wavelet (Wlet), homomorphic Fourier Butterworth, homomorphic Fourier ideal, homomorphic wavelet (Hmp_Wlet), frost, anisotropic diffusion, probabilistic patch-based (PPB), and homogeneous area filters, were used to find the best filter(s) to prepare thyroid nodule segmentation. A receiver operating characteristic (ROC) analysis was used for filter evaluation in the nodule segmentation process. Accordingly, 10 morphologic parameters were measured from segmented regions to find the best parameters that predict the segmentation performance.

Results

The best segmentation performance was reached by using 4 hybrid filters that mainly contain contrast-limited adaptive histogram equalization, Wlet, Hmed, Hmp_Wlet, and PPB filters. The area under the ROC curve for these filters ranged from 0.900 to 0.943 in comparison with the original image, with an area under the curve of 0.685. From 10 morphologic parameters, the area, convex area, equivalent diameter, solidity, and extent can evaluate segmentation performance.

Conclusions

Hybrid filters that contain contrast-limited adaptive histogram equalization, Wlet, Hmed, Hmp_Wlet, and PPB filters have a high potential to provide good conditions for thyroid nodule segmentation in ultrasound images. In addition to an ROC analysis, morphometry of a segmented region can be used to evaluate segmentation performances.

Segmentation outcome in each step of hybrid filter 4 and its corresponding segmentation results in the inset. A, Original image; B, CLAHE (preprocessed) image; C, CLAHE-WletHH2–filtered image; D, CLAHE-WletHH2-PPB–filtered image; E, CLAHE-WletHH2-PPBHmp_WletHH2–filtered image; F, fusion of final segmented mask (E) and original image (A).
Picture of Ardakani AA

Ardakani AA

He received his Ph.D. in Medical Physics in 2018 from the Iran University of Medical Sciences (IUMS), specializing in medical imaging and using artificial intelligence in radiological diagnosis. His research interests focus on the physics of medical imaging systems, quantitative analysis of medical images, and applying artificial intelligence in diagnostic radiology procedures. He is an assistant professor of Medical Physics at Shahid Beheshti University of Medical Sciences.

Leave a Reply

Your email address will not be published. Required fields are marked *