Deep Radiomics Features of Median Nerves for Automated Diagnosis of Carpal Tunnel Syndrome With Ultrasound Images, A Multi-Center Study

The limitations of ultrasound in CTS detection are the lack of objective measures in the detection of nerve abnormality and the operator-dependent nature of ultrasound imaging. In this study, we developed and proposed externally validated artificial intelligence (AI) models based on deep-radiomics features...

Abstract

Objectives

Ultrasound is widely used in diagnosing carpal tunnel syndrome (CTS). However, the limitations of ultrasound in CTS detection are the lack of objective measures in the detection of nerve abnormality and the operator-dependent nature of ultrasound imaging. Therefore, in this study, we developed and proposed externally validated artificial intelligence (AI) models based on deep-radiomics features.

Methods

We have used 416 median nerves from 2 countries (Iran and Colombia) for the development (112 entrapped and 112 normal nerves from Iran) and validation (26 entrapped and 26 normal nerves from Iran, and 70 entrapped and 70 normal nerves from Columbia) of our models. Ultrasound images were fed to the SqueezNet architecture to extract deep-radiomics features. Then a ReliefF method was used to select the clinically significant features. The selected deep-radiomics features were fed to 9 common machine-learning algorithms to choose the best-performing classifier. The 2 best-performing AI models were then externally validated.

Results

Our developed model achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.910 (88.46% sensitivity, 88.46% specificity) and 0.908 (84.62% sensitivity, 88.46% specificity) with support vector machine and stochastic gradient descent (SGD), respectively using the internal validation dataset. Furthermore, both models consistently performed well in the external validation dataset, and achieved an AUC of 0.890 (85.71% sensitivity, 82.86% specificity) and 0.890 (84.29% sensitivity and 82.86% specificity), with SVM and SGD models, respectively.

Conclusion

Our proposed AI models fed with deep-radiomics features performed consistently with internal and external datasets. This justifies that our proposed system can be employed for clinical use in hospitals and polyclinics.

Graphical abstract of the study. Overview of the 4 steps used to differentiate carpal tunnel syndrome from normal wrists. A, Ultrasound imaging at the tunnel inlet. B, Preprocessing, image filtering. C, Feature extraction. D, Feature analysis and classification.

Picture of Ardakani AA

Ardakani AA

He received his Ph.D. in Medical Physics in 2018 from the Iran University of Medical Sciences (IUMS), specializing in medical imaging and using artificial intelligence in radiological diagnosis. His research interests focus on the physics of medical imaging systems, quantitative analysis of medical images, and applying artificial intelligence in diagnostic radiology procedures. He is an assistant professor of Medical Physics at Shahid Beheshti University of Medical Sciences.

Leave a Reply

Your email address will not be published. Required fields are marked *