Predictive quantitative sonographic features on classification of hot and cold thyroid nodules‏

This study investigated the potentiality of ultrasound imaging to classify hot and cold thyroid nodules on the basis of textural and morphological analysis...

Abstract

Purpose

This study investigated the potentiality of ultrasound imaging to classify hot and cold thyroid nodules on the basis of textural and morphological analysis.

Methods

In this research, 42 hypo (hot) and 42 hyper-function (cold) thyroid nodules were evaluated through the proposed method of computer aided diagnosis (CAD) system. To discover the difference between hot and cold nodules, 49 sonographic features (9 morphological, 40 textural) were extracted. A support vector machine classifier was utilized for the classification of LNs based on their extracted features.

Results

In the training set data, a combination of morphological and textural features represented the best performance with area under the receiver operating characteristic curve (AUC) of 0.992. Upon testing the data set, the proposed model could classify the hot and cold thyroid nodules with an AUC of 0.948.

Conclusions

CAD method based on textural and morphological features is capable of distinguishing between hot from cold nodules via 2-Dimensional sonography. Therefore, it can be used as a supplementary technique in daily clinical practices to improve the radiologists’ understanding of conventional ultrasound imaging for nodules characterization.

Overview of proposed method process on ultrasound images.
Picture of Ardakani AA

Ardakani AA

He received his Ph.D. in Medical Physics in 2018 from the Iran University of Medical Sciences (IUMS), specializing in medical imaging and using artificial intelligence in radiological diagnosis. His research interests focus on the physics of medical imaging systems, quantitative analysis of medical images, and applying artificial intelligence in diagnostic radiology procedures. He is an assistant professor of Medical Physics at Shahid Beheshti University of Medical Sciences.

Leave a Reply

Your email address will not be published. Required fields are marked *